Inversion of waveforms from Xiangtang borehole seismic array for soil dynamic property
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
摘要:
In order to understand the site soil response of the Xiangtang borehole seismic array under real strong ground motion, reveal the site response, verify the technique of borehole exploration, and improve the precision of in-situ test and laboratory test, this paper presents a new approach, which is composed of two methods. One is the layered site seismic response method, whose layer transform matrix is always real. The other is a global-local optimization technique, which uses genetic algorithm (GA)-simplex method. An inversion of multi-component waveforms of P, SV and SH wave is carried out simultaneously. By inverting the records of three moderate and small earthquakes obtained from the Xiangtang borehole array (2# ) site, the soil dynamic characteristic parameters, including P velocity, damping ratio and frequency-dependent coefficient b, which has not been given in previous literatures, are calculated. The results show that the soil S wave velocity of the Xiangtang 2# borehole is generally greater than that obtained from the 1994 in-situ test, and is close to the velocity of the 3# borehole, which is more than 200 m away from the 2# borehole. Meanwhile, perceptible soil nonlinear behavior under peak ground motion of about 60×10-2 m/s2 is detected by the inversion analysis. The presented method can be used for studying the soil response of other borehole array sites.