作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
给出一种求解非线性发展方程精确行波解的新方法--双函数法.借助计算机代数系统Mathematica,利用双函数法和吴文俊消元法,获得NLS方程的多组新的显式行波解,包括孤波解和周期解.
推荐文章
Vakhnenko方程的新显式精确行波解
非线性方程
Vakhnenko方程
精确解
行波解
双函数法
几个高阶非线性方程的显式精确解
新方法
显式精确解
CDGSK方程
Kuramoto-Sivashinsky方程
UNSO-KdV方程
非线性离散薛定谔方程的显式精确解
非线性离散薛定谔方程
双曲函数法
孤波解
带五次项的非线性Schrǒdinger方程的显式精确解析解
Schrdinger方程
精确解
假设方法
孤波解
周期波解
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 非线性NLS方程的新显式精确行波解
来源期刊 南通大学学报(自然科学版) 学科 物理学
关键词 双函数法 吴文俊消元法 NLS方程 行波解
年,卷(期) 2007,(3) 所属期刊栏目
研究方向 页码范围 12-15,22
页数 5页 分类号 O415
字数 2581字 语种 中文
DOI 10.3969/j.issn.1673-2340.2007.03.003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵长海 南通大学理学院 8 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (24)
参考文献  (3)
节点文献
引证文献  (2)
同被引文献  (3)
二级引证文献  (0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2010(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
双函数法
吴文俊消元法
NLS方程
行波解
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南通大学学报(自然科学版)
季刊
1673-2340
32-1755/N
大16开
江苏省南通市啬园路9号
2002
chi
出版文献量(篇)
1549
总下载数(次)
7
总被引数(次)
6139
论文1v1指导