To investigate the imploding characteristics of cylindrical wire array,experiments with load current varying from 1.5MA to 1.7MA were carried out on the Qiangguang-1 facility.The complicated temporal-spatial distribution of x-ray radiation was measured by the one-dimensional (1D) x-ray imaging system.Other diagnostic equipments including the x-ray power meter(XRPM) and the time-integrated pinhole camera were used to record time-resolved x-ray power pulse and pinhole x-ray images.Analysis shows that the fast leading edge of the local x-ray radiation pulse is of primary importance in sharpening x-ray power pulse rather than the temporal synchrony and the spatial uniformity of implosion.Experimental results indicated that the better axial imploding synchrony,the faster the increase of X-ray power for an array consisting of 32 tungsten wires of 5μm diameter than for the others,and the higher the x-ray radiation power with maximal convergence ratio (r0/r1) of 10.5.A 'zipper-like' effect of x-ray radiation extending from the cathode Was also observed.