Broadcast encryption allows the sender to securely distribute his/her secret to a dynamically changing group of users over a broadcast channel. In this paper, we just take account of a simple broadcast communication task in quantum scenario, in which the central party broadcasts his secret to multi-receiver via quantum channel. We present three quantum broadcast communication schemes. The first scheme utilizes entanglement swapping and GreenbergerHorne-Zeilinger state to fulfil a task that the central party broadcasts the secret to a group of receivers who share a group key with him. In the second scheme, based on dense coding, the central party broadcasts the secret to multi-receiver,each of which shares an authentication key with him. The third scheme is a quantum broadcast communication scheme with quantum encryption, in which the central party can broadcast the secret to any subset of the legal receivers.