This paper investigates the adjacent interactions of three novel solitons for the quintic complex Ginzburg-Landau equation, which are plain pulsating, erupting and creeping solitons. It is found that different performances are presented for different solitons due to isolated regions of the parameter space where they exist. For example, plain pulsating and erupting solitons exhibit mutual annihilation during collisions with the decrease of total energy, but for creeping soliton,the two adjacent pulses present soliton fusion without any loss of energy. Otherwise, the method for restraining the interactions is also found and it can suppress interacions between these two adjacent pulses effectively.