基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Long-term prediction of chaotic time series is very difficult, for the chaos restricts predictability. In thie paper a new method is studied to model and predict chaotic time series based on minimax probability machine regression (MPMR). Since the positive global Lyapunov exponents lead the errors to increase exponentially in modelling the chaotic time series, a weighted term is introduced to compensate a cost function. Using mean square error (MSE) and absolute error (AE) as a criterion, simulation results show that the proposed method is more effective and accurate for multistep prediction. It can identify the system characteristics quite well and provide a new way to make long-term predictions of the chaotic time series.
推荐文章
期刊_丙丁烷TDLAS测量系统的吸收峰自动检测
带间级联激光器
调谐半导体激光吸收光谱
雾剂检漏 中红外吸收峰 洛伦兹光谱线型
期刊_联合空间信息的改进低秩稀疏矩阵分解的高光谱异常目标检测
高光谱图像
异常目标检测 低秩稀疏矩阵分解 稀疏矩阵 残差矩阵
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Prediction of chaotic time series based on modified minimax probability machine regression
来源期刊 中国物理B(英文版) 学科
关键词 minimax probability machine regression (MPMR) time series prediction chaos
年,卷(期) 2007,(11) 所属期刊栏目
研究方向 页码范围 3262-3270
页数 9页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (49)
共引文献  (6)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(6)
  • 参考文献(0)
  • 二级参考文献(6)
2017(5)
  • 参考文献(0)
  • 二级参考文献(5)
2018(5)
  • 参考文献(1)
  • 二级参考文献(4)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
minimax probability machine regression (MPMR)
time series
prediction
chaos
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国物理B(英文版)
月刊
1674-1056
11-5639/O4
北京市中关村中国科学院物理研究所内
eng
出版文献量(篇)
17050
总下载数(次)
0
总被引数(次)
27962
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导