作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
论文首先介绍了向量空间模型(VSM)方法以及特征向量抽取方法,推导和研究了引入“特征之间互相独立”假设的朴素贝叶斯分类算法.在此基础上提出了一种改进的贝叶斯算法,改进的贝叶斯算法假设一部分特征之间相互独立,比朴素贝叶斯分类算法更符合实际需要。并把它应用到反垃圾邮件中。最后介绍了贝叶斯过滤算法反垃圾邮件的基本步骤。
推荐文章
贝叶斯垃圾邮件过滤算法的改进与实现
贝叶斯
垃圾邮件过滤
模式匹配
模糊匹配
改进贝叶斯垃圾邮件过滤技术的研究
垃圾邮件
贝叶斯
精确率
加权
粒子群
基于朴素贝叶斯算法的垃圾邮件网关
朴素贝叶斯
信息增益
特征提取
一种改进的贝叶斯算法在垃圾邮件过滤中的研究
文本分类
垃圾邮件
朴素贝叶斯
支持向量机
EM
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进的贝叶斯算法在反垃圾邮件中的应用
来源期刊 电脑知识与技术:学术交流 学科 工学
关键词 朴素贝叶斯 垃圾邮件 向量空间模型特 征向量抽取 先验概率
年,卷(期) 2007,(4) 所属期刊栏目
研究方向 页码范围 154-155
页数 2页 分类号 TP391
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2005(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
朴素贝叶斯
垃圾邮件
向量空间模型特
征向量抽取
先验概率
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
总被引数(次)
0
论文1v1指导