We solve the generalized nonlinear Schrodinger equation describing the propagation of femtosecond pulses in a nonlinear optical fibre with higher-order dispersions by using the direct approach to perturbation for bright solitons, and discuss the combined effects of the third- and fourth-order dispersions on velocity, temporal intensity distribution and peak intensity of femtosecond pulses. It is noticeable that the combined effects of the third- and fourth-order dispersions on an initial propagated soliton can partially compensate each other, which seems to be significant for the stability controlling of soliton propagation features.