基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
支持向量机作为一种新的统计学习方法,在说话人识别中得到了广泛应用。本文针对支持向量机在说话人辨识中的大样本训练耗时问题,提出对语音参数进行模糊核聚类的约简方法,选择聚类边界的语音参数作为支持向量,可以在不影响识别率的情况下,减少支持向量机的训练量。并通过实验验证了该方法的有效性。
推荐文章
基于GMM聚类的鲁棒性i向量说话人确认
说话人识别
高斯混合模型
巴氏距离
支持向量机
线性判别分析
基于减法聚类与改进的模糊C-均值聚类算法的说话人识别方法的研究
说话人识别
减法聚类
改进的模糊C-均值聚类
改进的说话人聚类初始化和GMM的多说话人识别
多说话人识别
改进的聚类初始化
高斯混合模型
平均类纯度
基于混合聚类算法的模糊函数系统辨识方法
模糊函数
模糊C均值
模糊C回归模型
模糊辨识
最小二乘
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于模糊核聚类和SVM的说话人辨识
来源期刊 电脑知识与技术:学术交流 学科 工学
关键词 支持向量机 模糊核聚类 说话人辨识
年,卷(期) 2007,(10) 所属期刊栏目
研究方向 页码范围 227-228
页数 2页 分类号 TP391
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (1)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
支持向量机
模糊核聚类
说话人辨识
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
总被引数(次)
0
论文1v1指导