提出一种优化的核模糊C均值聚类算法(WBAKFCM).该算法首先通过改进蝙蝠算法(Weight bat Algorithm,WBA)确定最优聚类中心集合,然后用核模糊C均值聚类算法指导聚类划分.一方面,改进的蝙蝠算法在传统的蝙蝠算法中引入佳点集理论和速度权重,分别用于调节种群的初始化和个体位置的自适应更新.另一方面,在核模糊C均值聚类算法(Kernel Fuzzy C-Means,KFCM)中,选用了高斯核函数,从而将数据映射到高维特征空间进行聚类划分.实验结果表明,优化的核模糊C均值聚类算法在聚类准确率与时间效率上明显优于传统算法.