原文服务方: 微电子学与计算机       
摘要:
针对模糊C均值(FCM)聚类算法存在的缺点,利用量子粒子群优化(QPSO)算法的全局搜索能力,提出了一种新的聚类算法--基于量子粒子群优化的FCM聚类算法(QPSOFCM). QPSOFCM算法先对随机初始点利用QPSO进行优化,然后利用产生的中心点进行聚类,重复上述两步操作直至结果满意为止.新算法可以降低FCM算法对初始点的敏感度,一定程度上避免了FCM算法易陷入局部极优的缺陷.几组数据实验结果表明,与FCM和PSOFCM算法相比,提出的QPSOFCM算法聚类结果更可靠.
推荐文章
基于改进QPSO的模糊C-均值聚类算法
模糊C-均值聚类
量子粒子群优化
聚类分析
量子门更新策略
优化的核模糊C均值聚类算法
模糊C均值聚类
核函数
蝙蝠算法
佳点集
速度权重
基于改进QPSO的模糊C-均值聚类算法
模糊C-均值聚类
量子粒子群优化
聚类分析
量子门更新策略
基于改进遗传算法的模糊C均值聚类算法
聚类
FCM算法
遗传算法
种群熵
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于QPSO的模糊C均值聚类算法
来源期刊 微电子学与计算机 学科
关键词 量子粒子群算法 粒子群算法 模糊C均值聚类
年,卷(期) 2008,(7) 所属期刊栏目
研究方向 页码范围 194-197
页数 4页 分类号 TP301
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李朝锋 江南大学信息工程学院 48 430 12.0 19.0
2 王琪 14 269 7.0 14.0
3 居红云 江南大学信息工程学院 3 60 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (7)
共引文献  (27)
参考文献  (4)
节点文献
引证文献  (14)
同被引文献  (23)
二级引证文献  (35)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(3)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2010(8)
  • 引证文献(8)
  • 二级引证文献(0)
2011(7)
  • 引证文献(1)
  • 二级引证文献(6)
2012(2)
  • 引证文献(0)
  • 二级引证文献(2)
2013(2)
  • 引证文献(1)
  • 二级引证文献(1)
2014(1)
  • 引证文献(0)
  • 二级引证文献(1)
2015(5)
  • 引证文献(0)
  • 二级引证文献(5)
2016(5)
  • 引证文献(3)
  • 二级引证文献(2)
2017(4)
  • 引证文献(0)
  • 二级引证文献(4)
2018(7)
  • 引证文献(0)
  • 二级引证文献(7)
2019(7)
  • 引证文献(0)
  • 二级引证文献(7)
研究主题发展历程
节点文献
量子粒子群算法
粒子群算法
模糊C均值聚类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子学与计算机
月刊
1000-7180
61-1123/TN
大16开
1972-01-01
chi
出版文献量(篇)
9826
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导