基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
电价的分类与预测是电力市场电价理论研究中的重要内容.该文提出了混合贝叶斯支持向量机方法(BE-SVM),通过贝叶斯统计方法对电价进行分类,挖掘有效的数据信息,并结合支持向量机(SVM)技术预测现货电价数据,贝叶斯前验分布和后验分布用来估计SVM中的参数.通过比较模型BE-SVM、SVM 和神经网络(ANN)的预测结果,表明该文提出的BE-SVM方法提高了电价的预测精度,是一种有效的方法.
推荐文章
基于预测能力的贝叶斯网络分类器学习
贝叶斯网络
分类器
预测能力
基于TAN贝叶斯网络分类器的测井岩性预测
贝叶斯网络分类器
测井岩性预测
树扩展朴素贝叶斯分类器
模式识别
融合小波变换与贝叶斯LS-SVM的网络流量预测
网络流量预测
小波变换
支持向量机
最小二乘支持向量机
贝叶斯框架
基于引力模型的朴素贝叶斯分类算法
分类算法
朴素贝叶斯
引力模型
遥感图像
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于混合贝叶斯SVM的电价分类与预测
来源期刊 计算机工程 学科 工学
关键词 贝叶斯分类 支持向量机 市场电价 参数估计
年,卷(期) 2007,(18) 所属期刊栏目 博士论文
研究方向 页码范围 12-14
页数 3页 分类号 TP311
字数 2860字 语种 中文
DOI 10.3969/j.issn.1000-3428.2007.18.004
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周建中 华中科技大学水电与数字化工程学院 395 5250 35.0 50.0
2 莫莉 华中科技大学水电与数字化工程学院 25 354 12.0 18.0
3 杨俊杰 华中科技大学水电与数字化工程学院 46 1012 17.0 31.0
4 吴玮 华中科技大学水电与数字化工程学院 15 475 11.0 15.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (6)
节点文献
引证文献  (6)
同被引文献  (7)
二级引证文献  (10)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(2)
  • 参考文献(2)
  • 二级参考文献(0)
2007(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2009(3)
  • 引证文献(3)
  • 二级引证文献(0)
2011(2)
  • 引证文献(2)
  • 二级引证文献(0)
2012(2)
  • 引证文献(0)
  • 二级引证文献(2)
2015(2)
  • 引证文献(0)
  • 二级引证文献(2)
2016(4)
  • 引证文献(0)
  • 二级引证文献(4)
2017(3)
  • 引证文献(1)
  • 二级引证文献(2)
研究主题发展历程
节点文献
贝叶斯分类
支持向量机
市场电价
参数估计
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
总被引数(次)
317027
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导