原文服务方: 微电子学与计算机       
摘要:
提出了一种多贝叶斯网络集成的分类和预测方法.把专家知识作为"疫苗",利用免疫遗传算法和约束信息熵适应度函数相结合的方法进行贝叶斯网络结构的学习,得到多个反映同一样本数据集的、网络结构复杂度折衷的、满意的贝叶斯网络结构.然后,给出了多贝叶斯网络分类器集成模型,把学习得到的贝叶斯网络进行集成,代表"专家"对未知类别的不完全数据进行群决策的分类和预测,提升贝叶斯网络分类器的泛化能力.最后,结合贝叶斯推理工具GeNIe软件,通过实例说明该方法的合理性和有效性.
推荐文章
基于预测能力的贝叶斯网络分类器学习
贝叶斯网络
分类器
预测能力
基于贝叶斯网络分类器的产品故障率分类研究
维护保障
故障率等级
分类器
贝叶斯网络
基于TAN贝叶斯网络分类器的测井岩性预测
贝叶斯网络分类器
测井岩性预测
树扩展朴素贝叶斯分类器
模式识别
一般贝叶斯网络分类器及其学习算法
贝叶斯网络
马尔可夫毯
贝叶斯分类器
结构学习
特征选择
局部搜索
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 多贝叶斯网络分类器集成模型研究
来源期刊 微电子学与计算机 学科
关键词 贝叶斯网络 分类器集成模型 结构学习 约束信息熵 免疫遗传算法
年,卷(期) 2008,(2) 所属期刊栏目
研究方向 页码范围 54-57,61
页数 5页 分类号 TP181
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李玉玲 北京理工大学管理与经济学院 14 83 4.0 8.0
5 程云志 河南大学数据与知识工程研究所 12 22 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (12)
共引文献  (62)
参考文献  (6)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(3)
  • 参考文献(2)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(3)
  • 参考文献(3)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
贝叶斯网络
分类器集成模型
结构学习
约束信息熵
免疫遗传算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子学与计算机
月刊
1000-7180
61-1123/TN
大16开
1972-01-01
chi
出版文献量(篇)
9826
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导