作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对基于VSM(vector space model)的文本聚类算法存在的主要问题,即忽略了词之间的语义信息、忽略了各维度之间的联系而导致文本的相似度计算不够精确,提出基于语义距离计算文档间相似度及两阶段聚类方案来提高文本聚类算法的质量.首先,从语义上分析文档,采用最近邻算法进行第一次聚类;其次,根据相似度权重,对类特征词进行优胜劣汰;然后进行类合并;最后,进行第二次聚类,解决最近邻算法对输入次序敏感的问题.实验结果表明,提出的方法在聚类精度和召回率上均有显著的提高,较好解决了基于VSM的文本聚类算法存在的问题.
推荐文章
一种增量式文本软聚类算法
语义序列
增量式聚类
软聚类
文本聚类
一种基于主题的Web文本聚类算法
HTBC算法
Web文本聚类
主题
搜索引擎
互信息
一种面向网络话题发现的增量文本聚类算法
话题发现
文本聚类
增量聚类
准确度
ICIT算法
一种基于聚类加权的文本特征生成算法
文本分类
特征生成
权值计算
特征聚类
信息熵
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种提高文本聚类算法质量的方法
来源期刊 同济大学学报(自然科学版) 学科 工学
关键词 文本聚类 语义距离 最近邻聚类 相似度 聚类算法
年,卷(期) 2008,(12) 所属期刊栏目 计算机与信息工程
研究方向 页码范围 1712-1718
页数 7页 分类号 TP312
字数 7124字 语种 中文
DOI 10.3321/j.issn:0253-374X.2008.12.023
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 冯少荣 厦门大学信息科学与技术学院 49 822 13.0 28.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (3)
共引文献  (16)
参考文献  (2)
节点文献
引证文献  (7)
同被引文献  (10)
二级引证文献  (10)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(4)
  • 引证文献(3)
  • 二级引证文献(1)
2013(2)
  • 引证文献(0)
  • 二级引证文献(2)
2014(2)
  • 引证文献(1)
  • 二级引证文献(1)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(2)
  • 引证文献(0)
  • 二级引证文献(2)
2017(3)
  • 引证文献(1)
  • 二级引证文献(2)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
文本聚类
语义距离
最近邻聚类
相似度
聚类算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
同济大学学报(自然科学版)
月刊
0253-374X
31-1267/N
大16开
上海四平路1239号
4-260
1956
chi
出版文献量(篇)
6707
总下载数(次)
15
总被引数(次)
105464
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导