Apaf-1-deficient fog mouse cell apoptosis involves hypopolarization of the mitochondrial inner membrane,ATP depletion and citrate accumulation
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
摘要:
To explore how the intrinsic apoptosis pathway is controlled in the spontaneous fog (forebrain overgrowth) mutant mice with an Apaf1 splicing deficiency,we examined spleen and bone marrow cells from Apaf1+/+(+/+) and Apaf1fog/fog (fog/fog) mice for initiator caspase-9 activation by cellular stresses.When the mitochondrial inner membrane potential (△Ψm) was disrupted by staurosporine,+/+ cells but not fog/fog cells activated caspase-9 to cause apoptosis,indicating the lack of apoptosomc (apoptosis protease activating factor 1 (Apaf-1)/cytochrome c/(d)ATP/procaspase-9) function in fog/fog cells.However,when a marginal (~20%) decrease in △Ψm was caused by hydrogen peroxide (0.1 mM),peroxynitrite donor 3-morpholinosydnonimine (0.1 mM) and UV-C irradiation (20 J/m2),both +/+ and fog/fog cells triggeredprocaspase-9 auto-processing and its downstream cascade activation.Supporting our previous results,procaspase-9 pre-existing in the mitochondria induced its auto-processing before the cytosolic caspase activation regardless of the geuotypes.Cellular ATP concentration significantly decreased under the hypoactive AΨm condition.Furthermore,we detected accumulation of citrate,a kosmotrope known to facilitate procaspase-9 dimerization,probably due to a feedback control of the Krebs cycle by the electron transfer system.Thus,mitochondrial in situ caspase-9 activation may be caused by the major metabolic reactions in response to physiological stresses,which may represent a mode of Apaf-1-independent apoptosis hypothesized from recent genetic studies.