合取范式(conjunctive normal form,简称CNF)公式F是线性公式,如果F中任意两个不同子句至多有一个公共变元.如果F中的任意两个不同子句恰好含有一个公共变元,则称F是严格线性的.所有的严格线性公式均是可满足的,而对于线性公式类LCNF,对应的判定问题LSAT仍然是NP-完全的.LCNF(≥k)是子句长度大于或等于k的CNF公式子类,判定问题LSA(≥k)的NP-完全性与LCNF(≥k)中是否含有不可满足公式密切相关.即LSAT(≥k)的NP-完全性取决于LCNF(≥k)是否含有不可满足公式.S.Porschen等人用超图和拉丁方的方法构造了LCNF(≥3)和LCNF(≥4)中的不可满足公式,并提出公开问题:对于k≥5,LCNF(≥k)是否含有不可满足公式?将极小不可满足公式应用于公式的归约,引入了一个简单的一般构造方法.证明了对于k≥3,k-LCNF含有不可满足公式,从而证明了一个更强的结果:对于k≥3,k-LSAT是NP-完全的.