We investigate a planar ion chip design with a two-dimensional array of linear ion traps for scalable quantum information processing.Qubits are formed from the internal electronic states of trapped 40Ca+ ions.The segmented electrodes reside in a single plane on a substrate and a grounded metal plate separately,a combination of appropriaterf and DC potentials is applied to them for stable ion confinement.Every two adjacent electrodes can generate a linear ion trap in and between the electrodes above the chip at a distance dependent on the geometrical scale and other considerations.The potential distributions are calculated by using a static electric field qualitatively.This architecture provides a conceptually simple avenue to achieving the microfabrication and large-scale quantum computation based on the axrays of trapped ions.