基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
音频分类是提取音频结构和内容语义的重要手段,是基于内容的音频、视频检索和分析的基础.支持向量机(SVM)是一种有效的统计学习方法.本文提出了一种基于SVM的音频分类算法.将环境音分为6类:车鸣声,钟声,风声,冰块声,机床声和雨声.特征抽取是音频分类的基础.本文从帧层次上深入分析了不同类音频之间的区别性特征,包括频域能量,子带能量,过零率,频率中心,带宽,基音频率及MFCC(Mel-Frequency Cepstral Coefficients).实验结果表明,支持向量机模型的环境音分类性能较好,最优分类精度达到97.73%.
推荐文章
基于支持向量机的流量分类方法
流量分类
支持向量机
流量识别
岩爆分类的支持向量机方法
岩爆
分类
支持向量机
基于支持向量机的中文极短文本分类模型
支持向量机
jieba分词
极短文本分类
TF-IDF
基于支持向量机的环境γ剂量率模型
γ剂量率
降雨强度
支持向量机
分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于支持向量机模型的环境音分类研究
来源期刊 电子测量技术 学科 工学
关键词 环境音分类 支持向量机 MFCC
年,卷(期) 2008,(9) 所属期刊栏目 信息技术
研究方向 页码范围 121-123,132
页数 4页 分类号 TN912.3
字数 2803字 语种 中文
DOI 10.3969/j.issn.1002-7300.2008.09.035
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨鼎才 燕山大学信息科学与工程学院 34 286 9.0 15.0
2 张小梅 燕山大学信息科学与工程学院 1 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (31)
共引文献  (167)
参考文献  (7)
节点文献
引证文献  (4)
同被引文献  (74)
二级引证文献  (2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(16)
  • 参考文献(1)
  • 二级参考文献(15)
2003(5)
  • 参考文献(1)
  • 二级参考文献(4)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
环境音分类
支持向量机
MFCC
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子测量技术
半月刊
1002-7300
11-2175/TN
大16开
北京市东城区北河沿大街79号
2-336
1977
chi
出版文献量(篇)
9342
总下载数(次)
50
论文1v1指导