PAM(Partitioning Around Medoids)是一种基于k-中心点的聚类算法,在处理数据集聚类时,具有较强的鲁棒性和准确性.但是,PAM算法的主要缺点是确定聚类中心点集所需的计算代价太高.对于大数据集,PAM聚类过程缓慢.提出一种利用部分距离搜索(PDS),先前中心点标号(PMI),以及三角不等式消除(TIE)准则等搜索策略来降低中心点迭代所需计算复杂性,实现快速PAM聚类的新算法.实验结果表明,相对于基本PAM聚类算法,在保持相同聚类效果的情况下,快速PAM聚类新算法能够减少70%~90%的乘法计算量,并可节省约1/3以上的计算时间.