Extraordinary photons with unusual angular momentum
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
摘要:
A series of novel state-vector functions (SVFs), which is the general solution of the Schrodinger equation for a photon, are constructed. Each set of these functions consists of a triplet of eigen-SVFs: The triplet can be broken down into a pair of nonzero/-order functions and a single zero-order function. The photons, described with a triplet of eigen-SVFs, possess all the quantum characteristics of a photon: In addition to common attributes like energy E=hω, and momentum Pz= hk; they also exhibit different angular momenta (AM) Lz+=Ih, Lz-= Ih, and Lz0=0, where I≥1. In other words, in addition to usual eigenvalues Lz±=±h, there are unusual nonzero/-order eigenvalues Lz±=±Ih and a zero-order eigenvalue Lz0 =0 for AM of a photon. By a series of SVFs, the pattern from nonzero /-order and zero-order Laguerre-Gaussian modes of a laser beam is explained well from a quantum mechanical point of view.