Cell adhesion molecules regulate contractile ring-independent cytokinesis in Dictyostelium discoideum
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
摘要:
To investigate the roles of substrate adhesion in cytokinesis, we established cell lines lacking paxiUin (PAXB) or vinculin (VINA), and those expressing the respective GFP fusion proteins in Dictyostelium discoideum. As in mammalian cells, GFP-PAXB and GFP-VINA formed focal adhesion-like complexes on the cell bottom, paxB cells in suspension grew normally, but on substrates, often failed to divide after regression of the furrow. The efficient cytokinesis of paxB cells in suspension is not because of shear forces to assist abscission, as they divided normally in static suspension culture as well. Double knockout strains lacking mhcA, which codes for myosin I1, and paxB or vinA displayed more severe cytokinetic defects than each single knockout strain. In mitotic wild-type cells, GFP-PAXB was diffusely distributed on the basal membrane, but was strikingly condensed along the polar edges in mitotic mhcA cells. These results are consistent with our idea that Dictyostelium displays two forms of cytokinesis, one that is contractile ringdependent and adhesion-independent, and the other that is contractile ring-independent and adhesion-dependent, and that the latter requires PAXB and VINA. Furthermore, that paxB cells fail to divide normally in the presence of substrate adhesion suggests that this adhesion molecule may play additional signaling roles.