作者:
原文服务方: 湖南理工学院学报(自然科学版)       
摘要:
针对n条边长给定的n+1边形的最大面积Sn+1,max进行了定量讨论(n≥2).当n=2、n=3及给定的n务边全都相等且n≥4时,给出了相应的最大面积S3,max、S4zmax及Sn+1,max的准确计算公式;当给定的月条边长不全相等且n≥4时,给出了Sn+1,max的一种数值计算方法.
推荐文章
椭圆内接多边形的最大面积
椭圆内接多边形
面积
单形
超椭球
椭圆内接多边形的最大面积
椭圆内接多边形
面积
单形
超椭球
转化思想在小学数学多边形面积中的运用
转化思想
多边形面积
小学数学
转化思想在小学数学多边形面积中的运用
转化思想
多边形面积
小学数学
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一类多边形最大面积的数值计算
来源期刊 湖南理工学院学报(自然科学版) 学科
关键词 n+1边形 最大面积 数值方法 相对误差
年,卷(期) 2009,(4) 所属期刊栏目 数学与应用数学
研究方向 页码范围 10-12
页数 3页 分类号 O178
字数 语种 中文
DOI 10.3969/j.issn.1672-5298.2009.04.003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李明 中国医科大学数学教研室 49 138 7.0 10.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
n+1边形
最大面积
数值方法
相对误差
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
湖南理工学院学报(自然科学版)
季刊
1672-5298
43-1421/N
大16开
1988-01-01
chi
出版文献量(篇)
2108
总下载数(次)
0
总被引数(次)
5747
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导