基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Ant colony optimization (ACO) has been proved to be one of the best performing algorithms for NP-hard problems as TSP. The volatility rate of pheromone trail is one of the main parameters in ACO algorithms. It is usually set experimentally in the literatures for the application of ACO. The present paper first proposes an adaptive strategy for the volatility rate of pheromone trail according to the quality of the solutions found by artificial ants. Second, the strategy is combined with the setting of other parameters to form a new ACO method. Then, the proposed algorithm can be proved to converge to the global optimal solution. Finally, the experimental results of computing traveling salesman problems and film-copy deliverer problems also indicate that the proposed ACO approach is more effective than other ant methods and non-ant methods.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Ant Colony Optimization Based on Adaptive Volatility Rate of Pheromone Trail
来源期刊 通讯、网络与系统学国际期刊(英文) 学科 医学
关键词 Ant COLONY Optimization (ACO) ADAPTIVE VOLATILITY RATE PHEROMONE TRAIL
年,卷(期) 2009,(8) 所属期刊栏目
研究方向 页码范围 792-796
页数 5页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Ant
COLONY
Optimization
(ACO)
ADAPTIVE
VOLATILITY
RATE
PHEROMONE
TRAIL
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
通讯、网络与系统学国际期刊(英文)
月刊
1913-3715
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
763
总下载数(次)
1
总被引数(次)
0
论文1v1指导