基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The oil industry is now increasingly concentrating their efforts and activities in connection with de-veloping fields in deeper waters, ranging typically from 500 m to 3000 m worldwide. However, the modeling of a full-depth system has become difficult presently; no tank facility is sufficiently large to perform the testing of a complete FPS with compliant mooring in 1000 m to 3000 m depth, within rea-sonable limits of model scale. Until recently, the most feasible procedure to meet this challenge seems to be the so-called "hybrid model testing technique". To implement this technique, the first and im-portant step is to design the equivalent water depth truncated mooring system. In this work, the opti-mization design of the equivalent water depth truncated mooring system in hybrid model testing for deep sea platforms is investigated. During the research, the similarity of static characteristics between the truncated and full depth system is mainly considered. The optimization mathematical model for the equivalent water depth truncated system design is set up by using the similarity in numerical value of the static characteristics between the truncated system and the full depth one as the objective function. The dynamic characteristic difference between the truncated and full depth mooring system can be minished by selecting proper design rule. To calculate the static characteristics of the mooring system, the fourth order Runge-Kutta method is used to solve the static equilibrium equation of the single mooring line. After the static characteristic of the single mooring line is calculated, the static charac-teristic of the whole mooring system is calculated with Lagrange numerical interpolation method. The mooring line material database is established and the standard material name and the diameter of the mooring line are selected as the primary key. The improved simulated annealing algorithm for continual & discrete variables and the improved complex algorithm for discrete variables are employed to per-form the optimization calculation. The C++ programming language is used to develop the computer program according to the object-oriented programming idea. To perform the optimization calculation with the two algorithms mentioned above respectively and the better result is selected as the final one. To examine the developed program, an example of equivalent water depth truncated mooring system optimum design calculation on a 100,000-t, turret mooring FPSO in water depth of 320 m are performed to obtain the conformation parameters of the truncated mooring system, in which the truncated water depth is 160 m. The model test under some typical environment conditions are performed for both the truncated and the full depth system with model scale factor λ=80. After comparing the corresponding results from the test of the truncated system with those from the full depth system test, it's found that the truncated mooring system design in this work is successful.
推荐文章
期刊_丙丁烷TDLAS测量系统的吸收峰自动检测
带间级联激光器
调谐半导体激光吸收光谱
雾剂检漏 中红外吸收峰 洛伦兹光谱线型
期刊_联合空间信息的改进低秩稀疏矩阵分解的高光谱异常目标检测
高光谱图像
异常目标检测 低秩稀疏矩阵分解 稀疏矩阵 残差矩阵
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Investigation on optimization design of equivalent water depth truncated mooring system
来源期刊 中国科学G辑(英文版) 学科
关键词
年,卷(期) 2009,(2) 所属期刊栏目
研究方向 页码范围 277-292
页数 16页 分类号
字数 语种 英文
DOI 10.1007/s11433-009-0044-y
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (26)
共引文献  (47)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(5)
  • 参考文献(0)
  • 二级参考文献(5)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(6)
  • 参考文献(5)
  • 二级参考文献(1)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
中国科学:物理学 力学 天文学(英文版)
月刊
1674-7348
11-5849/N
16开
北京东黄城根北街16号
80-212
2004
eng
出版文献量(篇)
3714
总下载数(次)
0
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导