摘要:
一个指标为3的Mendelsohn三元系,记为MTS(ν,3),是一个对子(X,β),其中X是一个ν元集,β是X中循环三元组(区组)的集合,满足X的每一个有序对都恰包含于β中的3个区组.设(X,β)是一个没有重复区组的MTS(ν,3),如果(x,y,z)∈β必有(z,y,x)≠β则称(X,β)为单纯的,记为PMTS(ν,3).不相交PMTS(ν,3)大集,记为LPMTS(ν,3),是一个集合{(X,β)}i,其中每个(X,β)都是一个PMTS(ν,3),并且Uiβi构成了X中所有循环三元组的一个划分.本文给出了LPMTS(ν,3)的一种构造方法,得到了其存在的一个无穷类:对于ν≡8,14(mod 18),ν≠14,存在LPMTS(ν,3).