Bleustein-Gulyaev waves in a functionally graded piezoelectric material layered structure
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
摘要:
This work presents a theoretical study of the propagation behavior of Bleustein-Gulyaev waves in a layered structure consisting of a functionally graded piezoelectric material (FGPM) layer and a trans-versely isotropic piezoelectric substrate. The influence of the graded variation of FGPM coefficients on the dispersion relations of Bleustein-Gulyaev waves in the layered structure is investigated. It is dem-onstrated that, for a certain frequency range of Bleustein-Gulyaev waves, the mechanical perturbations of the particles are restricted in the FPGM layer and the phase velocity is independent of the electrical boundary conditions at the free surface. Results presented in this study can not only provide further Insight on the electromechanical coupling behavior of surface waves in FGPM layered structures, but also lend a theoretical basis for the design of high-performance surface acoustic wave (SAW) devices.