基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了准确反映热工过程动态特性,实现热工过程整体优化控制,提出了一类新的径向基函数神经网络(RBF-NN)的建模方法:采用熵方法和竞争学习算法,结合非线性自回归滑动平均(NARMA)模型的输入/输出结构实现RBF-NN的优化,辨识RBF-NN结构,并用最小二乘算法(LS)确定权向量,实现了典型的非线性热工过程建模.通过两个实例验证:基于NARMA结构的RBF-NN建模,具有较高的辨识精度和较少的隐层节点.
推荐文章
基于径向基函数神经网络的智能嗅觉系统
智能嗅觉系统
径向基函数网络
气体传感器阵列
选择性
基于径向基函数神经网络的板形模式识别研究
板形模式识别
RBF网络
模糊C均值算法
伪逆法
基于径向基函数神经网络的地下水数值模拟模型的替代模型研究
替代模型
径向基函数神经网络
拉丁超立方抽样
金泉工业园区
用径向基函数神经网络模型预报感潮河段洪水位
感潮河段
水位预报
径向基函数
人工神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于径向基函数神经网络的热工过程模型辨识
来源期刊 重庆大学学报(自然科学版) 学科 工学
关键词 自动控制 热工过程 非线性 NARMA模型 径向基函数神经网络 最小二乘算法
年,卷(期) 2009,(9) 所属期刊栏目
研究方向 页码范围 1032-1036
页数 5页 分类号 TP273
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨晨 重庆大学动力工程学院 73 708 16.0 23.0
2 李攀峰 重庆大学动力工程学院 1 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (65)
共引文献  (85)
参考文献  (12)
节点文献
引证文献  (4)
同被引文献  (15)
二级引证文献  (1)
1978(1)
  • 参考文献(1)
  • 二级参考文献(0)
1984(3)
  • 参考文献(1)
  • 二级参考文献(2)
1985(2)
  • 参考文献(0)
  • 二级参考文献(2)
1987(4)
  • 参考文献(1)
  • 二级参考文献(3)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(3)
  • 参考文献(0)
  • 二级参考文献(3)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(5)
  • 参考文献(0)
  • 二级参考文献(5)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(5)
  • 参考文献(1)
  • 二级参考文献(4)
2001(9)
  • 参考文献(0)
  • 二级参考文献(9)
2002(9)
  • 参考文献(1)
  • 二级参考文献(8)
2003(7)
  • 参考文献(0)
  • 二级参考文献(7)
2004(5)
  • 参考文献(1)
  • 二级参考文献(4)
2005(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(3)
  • 参考文献(3)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
自动控制
热工过程
非线性
NARMA模型
径向基函数神经网络
最小二乘算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
重庆大学学报
月刊
1000-582X
50-1044/N
大16开
重庆市沙坪坝正街174号
78-16
1960
chi
出版文献量(篇)
6349
总下载数(次)
8
总被引数(次)
85737
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导