基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
高斯混合模型(GMM)已广泛地应用于文本无关的说话人识别系统,该方法具有简单高效的特点.但如果GMM模型的高斯混合分量的数目比较多时,整个模型运算的复杂度会比较大.针对这个问题,提出将聚类算法和传统的高斯混合建模结合起来从而优化高斯混合模型,能够有效地提高说话人识别的速度.实验结果验证了这种算法的高效性.
推荐文章
改进的说话人聚类初始化和GMM的多说话人识别
多说话人识别
改进的聚类初始化
高斯混合模型
平均类纯度
基于GMM聚类的鲁棒性i向量说话人确认
说话人识别
高斯混合模型
巴氏距离
支持向量机
线性判别分析
噪声环境中基于GMM汉语说话人识别
语音增强
Weiner滤波法
说话人识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于聚类优化GMM提高说话人识别性能的研究
来源期刊 计算机技术与发展 学科 工学
关键词 说话人识别 高斯混合模型 聚类算法
年,卷(期) 2009,(4) 所属期刊栏目 智能、算法、系统结构
研究方向 页码范围 35-37,40
页数 4页 分类号 TN92
字数 2642字 语种 中文
DOI 10.3969/j.issn.1673-629X.2009.04.010
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 林江云 厦门大学计算机科学系 3 5 1.0 2.0
2 吴庆棋 厦门大学计算机科学系 1 5 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (3)
节点文献
引证文献  (5)
同被引文献  (9)
二级引证文献  (22)
1995(2)
  • 参考文献(2)
  • 二级参考文献(0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2011(5)
  • 引证文献(4)
  • 二级引证文献(1)
2012(3)
  • 引证文献(1)
  • 二级引证文献(2)
2013(3)
  • 引证文献(0)
  • 二级引证文献(3)
2014(3)
  • 引证文献(0)
  • 二级引证文献(3)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(4)
  • 引证文献(0)
  • 二级引证文献(4)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(4)
  • 引证文献(0)
  • 二级引证文献(4)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
说话人识别
高斯混合模型
聚类算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导