基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对液体火箭发动机涡轮泵故障诊断中出现的多故障分类问题,为提高支持向量机学习机器的分类性能,提出了一种基于遗传算法的支持向量机参数优化算法,利用遗传算法的全局搜索性能对核参数进行了优化.结果表明,遗传算法能够加速支持向量机参数的优化搜索,所建模型对含有较强的噪音背景的故障样本进行了很好的分类诊断,表现出了很好的抗噪和分类能力.
推荐文章
基于EMD与GA-SVM的轴承故障诊断
轴承
故障诊断
特征提取
特征选择
经验模态分解
Shannon熵
Renyi熵
遗传算法
最小二乘支持向量机
Wrapper
基于粒子群优化SVM的飞机发电机故障诊断
故障诊断
支持向量机
粒子群优化
三级无刷交流发电机
励磁绕组故障
基于IGWO算法优化的SVM模拟电路故障诊断
改进灰狼优化算法
支持向量机
模拟电路
故障诊断
基于PSO-SVM的发动机故障诊断研究
粒子群优化算法
支持向量机
发动机
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于GA优化的SVM涡轮泵故障诊断
来源期刊 液压与气动 学科 航空航天
关键词 支持向量机 遗传算法 涡轮泵 故障诊断
年,卷(期) 2009,(1) 所属期刊栏目 使用 维修
研究方向 页码范围 84-86
页数 3页 分类号 V434.21
字数 3705字 语种 中文
DOI 10.3969/j.issn.1000-4858.2009.01.034
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张炜 西安交通大学机械工程学院 40 320 10.0 16.0
5 张磊 15 74 6.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (15)
共引文献  (1826)
参考文献  (5)
节点文献
引证文献  (6)
同被引文献  (6)
二级引证文献  (3)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2010(2)
  • 引证文献(2)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
支持向量机
遗传算法
涡轮泵
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
液压与气动
月刊
1000-4858
11-2059/TH
大16开
北京市西城区德胜门外教场口1号
2-828
1977
chi
出版文献量(篇)
7875
总下载数(次)
16
总被引数(次)
44024
论文1v1指导