基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对翅片管蒸发器结霜过程混杂着复杂的线性和非线性特征且测试数据受噪声干扰大,使用单一的模型无法对其性能进行预测的难题,建立了基于求和自回归移动平均(Autoregressive Integrated Moving Average,ARIMA)和支持向量机(Support Vector Machine,SVM)的翅片管蒸发器结霜性能组合预测模型.利用实验数据对模型进行了验证和评估,并与单一ARIMA模型和SVM模型做了对比分析.结果表明,基于ARIMA-SVM的组合预测模型能兼顾结霜过程的线性和非线性特征,具有良好的预测性能,并能够较精确地预测到翅片管蒸发器性能参数的转向点.
推荐文章
一种新的基于ARIMA-SVM网络流量预测研究
自回归滑动平均模型(ARIMA)
支持向量机(SVM)
网络流量
预测
结霜工况下不同结构微通道蒸发器换热性能实验研究
微通道蒸发器
结霜
双层结构
换热性能
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于ARIMA-SVM模型的翅片管蒸发器结霜性能预测
来源期刊 上海交通大学学报 学科 工学
关键词 翅片管蒸发器 蒸发器结霜 求和自回归移动平均 支持向量机 混合预测模型 转向点
年,卷(期) 2009,(10) 所属期刊栏目 一般工业技术
研究方向 页码范围 1622-1626,1631
页数 6页 分类号 TB65
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (3)
共引文献  (22)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1987(1)
  • 参考文献(1)
  • 二级参考文献(0)
1992(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(2)
  • 二级参考文献(1)
2003(2)
  • 参考文献(2)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
翅片管蒸发器
蒸发器结霜
求和自回归移动平均
支持向量机
混合预测模型
转向点
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
上海交通大学学报
月刊
1006-2467
31-1466/U
大16开
上海市华山路1954号
4-338
1956
chi
出版文献量(篇)
8303
总下载数(次)
20
总被引数(次)
98140
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导