基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
利用PSO粒子群算法对神经网络的权值和阈值,隐藏层中神经元的传递函数系数进行优化.针对网络训练效果好,而泛化能力很差的情况,将训练样本均方差和权值的平方和结合作为PSO算法的目标函数.实验表明,该方法比惯性权值PSO-BP算法和基本梯度下降法好,不但稳定性好,而且预测精度高,泛化能力得到明显加强.
推荐文章
基于面向对象自适应粒子群算法的神经网络训练
神经网络
粒子群优化算法
面向对象方法
拓扑结构优化
神经网络的泛化能力与结构优化算法研究
神经网络
泛化能力
结构优化
正则化
基于粒子群优化BP神经网络的脉象识别方法
脉象识别
粒子群算法
输出误差
误差反向传播算法
神经网络
泛化能力
基于粒子群算法优化BP神经网络漏钢预报的研究
粒子群优化算法
BP神经网络
连铸
漏钢预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 PSO粒子群算法在神经网络泛化能力中研究
来源期刊 计算机工程与应用 学科 工学
关键词 BP网络 PSO粒子群算法 传递函数 逼近 泛化
年,卷(期) 2009,(29) 所属期刊栏目 研究、探讨
研究方向 页码范围 34-36,67
页数 4页 分类号 TP131
字数 3888字 语种 中文
DOI 10.3778/j.issn.1002-8331.2009.29.010
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (13)
共引文献  (148)
参考文献  (6)
节点文献
引证文献  (8)
同被引文献  (26)
二级引证文献  (16)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(1)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(3)
  • 参考文献(3)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(3)
  • 引证文献(3)
  • 二级引证文献(0)
2013(1)
  • 引证文献(0)
  • 二级引证文献(1)
2014(2)
  • 引证文献(1)
  • 二级引证文献(1)
2016(6)
  • 引证文献(2)
  • 二级引证文献(4)
2017(5)
  • 引证文献(1)
  • 二级引证文献(4)
2018(5)
  • 引证文献(1)
  • 二级引证文献(4)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
BP网络
PSO粒子群算法
传递函数
逼近
泛化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导