原文服务方: 计算机应用研究       
摘要:
粒子群优化(PSO)算法与误差反向传播(BP)算法相结合训练神经网络(PSO-BP-NN),可以有效提高网络的泛化能力,但是面临的最大问题就是计算时间过长.为此,提出了基于图形处理单元(GPU)的并行加速解决方案,并基于该方法对波达方向(DOA)估计问题进行了建模.在算法执行过程中,利用粒子群神经网络(PSO-NN)粒子行为的可并行性和误差反向传播神经网络(BP-NN)样本训练的可并行性来减少神经网络(NN)的训练时间.在统一计算设备架构(CUDA)下对DOA估计进行了NN建模.数值计算结果表明,相对于CPU端串行PSO-BP-NN,GPU端并行PSO-BP-NN在收敛稳定性一致的前提下取得了65倍的计算加速比.
推荐文章
基于改进PSO-BP神经网络的回弹预测研究
V形自由折弯
回弹
BP神经网络
改进粒子群算法
全局搜索能力
收敛精度
泛化能力
基于PSO-BP神经网络的矢量水听器的DOA估计
信号处理
DOA估计
信号子空间
BP神经网络
矢量水听器
基于PSO-BP神经网络的地铁盾构场地土体参数反演
土体参数
参数反演
BP神经网络
粒子群算法
PSO-BP神经网络
正交试验法
预测分析
基于PSO-BP神经网络的高炉煤气受入量的预测
高炉煤气
受入量预测
预测模型
PSO-BP神经网络
模型训练
模型检验
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于GPU的PSO-BP神经网络DOA估计
来源期刊 计算机应用研究 学科
关键词 波达方向估计 粒子群优化 神经网络 图形处理单元 统一计算设备架构
年,卷(期) 2015,(10) 所属期刊栏目 算法研究探讨
研究方向 页码范围 2963-2966
页数 4页 分类号 TP183
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2015.10.019
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 田雨波 江苏科技大学电子信息学院 109 634 13.0 19.0
2 张贞凯 江苏科技大学电子信息学院 38 247 8.0 15.0
3 陈风 江苏科技大学电子信息学院 6 24 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (46)
共引文献  (81)
参考文献  (9)
节点文献
引证文献  (6)
同被引文献  (6)
二级引证文献  (5)
1986(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(7)
  • 参考文献(1)
  • 二级参考文献(6)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(5)
  • 参考文献(2)
  • 二级参考文献(3)
2012(5)
  • 参考文献(3)
  • 二级参考文献(2)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(4)
  • 引证文献(3)
  • 二级引证文献(1)
2018(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(3)
  • 引证文献(1)
  • 二级引证文献(2)
研究主题发展历程
节点文献
波达方向估计
粒子群优化
神经网络
图形处理单元
统一计算设备架构
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导