作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
用户的生活方式(lifestyle)在很大程度上决定着用户的消费习惯。所以针对用户评分数据的极端稀疏性和新用户的推荐问题,本文提出了一种基于用户生活方式的最近邻协同过滤推荐算法,通过描述用户生活方式的特征矩阵来计算用户间的相似性,初步预测用户对未评分项目的评分,对用户项评分矩阵进行调整,然后采用一种新颖的相似性度量方法计算用户的最近邻居。
推荐文章
基于用户引力的协同过滤推荐算法
推荐算法
协同过滤推荐
万有引力定律
社会标签
基于用户历史行为的协同过滤推荐算法
数据挖掘
协同过滤
用户偏好
项目相似度
个性化推荐
基于用户兴趣模型聚类的协同过滤推荐算法
协同过滤
推荐系统
用户兴趣模型
推荐算法
基于标签分类的协同过滤推荐算法
协同过滤
矩阵分解
交替最小二乘法
迭代投影寻踪
监督学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于用户生活方式的协同过滤推荐算法
来源期刊 电脑知识与技术:学术交流 学科 工学
关键词 协同过滤 生活方式 推荐算法 相似性
年,卷(期) 2009,(3X) 所属期刊栏目
研究方向 页码范围 2291-2292
页数 2页 分类号 TP301.6
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 彭玉 10 64 2.0 8.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
协同过滤
生活方式
推荐算法
相似性
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导