基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
A new filtering algorithm — PSO-UPF was proposed for nonlinear dynamic systems. Basing on the concept of re-sampling, particles with bigger weights should be re-sampled more time, and in the PSO-UPF, after calculating the weight of particles, some particles will join in the refining process, which means that these particles will move to the region with higher weights. This process can be regarded as one-step predefined PSO process, so the proposed algo-rithm is named PSO-UPF. Although the PSO process increases the computing load of PSO-UPF, but the refined weights may make the proposed distribution more closed to the poster distribution. The proposed PSO-UPF algorithm was compared with other several filtering algorithms and the simulating results show that means and variances of PSO-UPF are lower than other filtering algorithms.
推荐文章
基于Swarm平台的装备体系建模研究
Swarm
Agent
装备体系
建模
基于多Agent计算机仿真实验平台Swarm的综述
Swarm
复杂系统
人工世界
计算机仿真模拟
Agent
基于Swarm平台的Ad-Hoc网络仿真
Ad Hoc网络
复杂自适应系统
Swarm仿真
Agent
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Particle Filtering Optimized by Swarm Intelligence Algorithm
来源期刊 智能学习系统与应用(英文) 学科 工学
关键词 FILTERING Method PARTICLE FILTERING Unscented KALMAN FILTER PARTICLE SWARM OPTIMIZER
年,卷(期) 2010,(1) 所属期刊栏目
研究方向 页码范围 49-53
页数 5页 分类号 TP39
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
FILTERING
Method
PARTICLE
FILTERING
Unscented
KALMAN
FILTER
PARTICLE
SWARM
OPTIMIZER
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能学习系统与应用(英文)
季刊
2150-8402
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
166
总下载数(次)
0
总被引数(次)
0
论文1v1指导