基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
A promising approach to learn to play board games is to use reinforcement learning algorithms that can learn a game position evaluation function. In this paper we examine and compare three different methods for generating training games: 1) Learning by self-play, 2) Learning by playing against an expert program, and 3) Learning from viewing ex-perts play against each other. Although the third possibility generates high-quality games from the start compared to initial random games generated by self-play, the drawback is that the learning program is never allowed to test moves which it prefers. Since our expert program uses a similar evaluation function as the learning program, we also examine whether it is helpful to learn directly from the board evaluations given by the expert. We compared these methods using temporal difference methods with neural networks to learn the game of backgammon.
推荐文章
HOME PLAY插座的实用性及时尚设计
插座
组合使用
分解单体使用
夜间发光指示
计量供电
电压显示
基于Triple Play业务的OFDM系统信道划分
OFDM系统
遗传算法
蚂蚁
最优化理论
三重播放业务
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Self-Play and Using an Expert to Learn to Play Backgammon with Temporal Difference Learning
来源期刊 智能学习系统与应用(英文) 学科 医学
关键词 Board GAMES Reinforcement LEARNING TD(λ) Self-Play LEARNING From DEMONSTRATION
年,卷(期) 2010,(2) 所属期刊栏目
研究方向 页码范围 57-68
页数 12页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Board
GAMES
Reinforcement
LEARNING
TD(λ)
Self-Play
LEARNING
From
DEMONSTRATION
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能学习系统与应用(英文)
季刊
2150-8402
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
166
总下载数(次)
0
总被引数(次)
0
论文1v1指导