基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
机械故障诊断本质上是一个模式分类问题.支持向量机由于解决分类问题有着较好的表现,得到了日益广泛的应用.针对支持向量机的参数对分类性能的影响,采用粒子群算法对支持向量机的惩罚因子和径向基核函数进行优化,使支持向量机的分类性能最优,并将其应用于实例,得到了较好的分类正确率.
推荐文章
基于粒子群算法优化支持向量机的模拟电路诊断
故障诊断
模拟电路
粒子群优化
多小波变换
支持向量机
改进粒子群算法优化支持向量机在故障诊断中的应用研究
支持向量机
故障诊断
粒子群算法优化
粒子群优化算法和支持向量机的电子音乐信号分类研究
电子音乐信号分类
粒子群优化算法
支持向量机
音乐信号采集
特征提取
分类模型
基于粒子群算法优化支持向量机汽车故障诊断研究
粒子群算法
支持向量机
汽车故障诊断
遗传聚类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粒子群优化的支持向量机在机械模式分类中的应用
来源期刊 微计算机应用 学科 工学
关键词 支持向量机 粒子群算法 模式分类
年,卷(期) 2010,(12) 所属期刊栏目
研究方向 页码范围 8-13
页数 分类号 TP3
字数 3973字 语种 中文
DOI 10.3969/j.issn.2095-347X.2010.12.002
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 康建设 军械工程学院装备指挥与管理系 61 455 11.0 19.0
2 张星辉 军械工程学院装备指挥与管理系 22 97 5.0 9.0
3 刘占军 军械工程学院装备指挥与管理系 5 29 4.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (15)
共引文献  (1829)
参考文献  (5)
节点文献
引证文献  (1)
同被引文献  (5)
二级引证文献  (10)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(3)
  • 引证文献(0)
  • 二级引证文献(3)
2018(5)
  • 引证文献(0)
  • 二级引证文献(5)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
支持向量机
粒子群算法
模式分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
网络新媒体技术
双月刊
2095-347X
10-1055/TP
大16开
北京海淀区北四环西路21号
2-304
1980
chi
出版文献量(篇)
3082
总下载数(次)
5
论文1v1指导