基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对目前关联规则挖掘的数据集不断增大,而很多抽样算法精度不高还要解决一系列NP难问题等情况.在分析利用频繁1项集进行抽样处理的基础上,提出了高精度的基于频繁n项集平均划分的关联规则挖掘算法--EHAC算法.理论和实验都表明,EHAC能够提高数据挖掘精度,在数据平均划分的同时,尽量保证频繁n项集能够平均划分,减少了数据库扫描次数,一定程度上缩减了数据库规模.
推荐文章
基于Spark框架的FP-Growth大数据频繁项集挖掘算法
大数据
频繁项集挖掘
Spark框架
FP-Growth算法
垂直布局
基于关联规则的医疗大数据挖掘算法
关联规则
医疗
大数据
挖掘
算法
大数据环境下相容数据集的关联规则数据挖掘
大数据
相容数据集
不相容数据集
关联规则
数据挖掘
基于差分隐私的不确定数据频繁项集挖掘算法
差分隐私
不确定数据的频繁项集
截断期望支持度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 大数据集挖掘的层次二分抽样算法
来源期刊 计算机工程与应用 学科 工学
关键词 大数据集 关联规则挖掘 抽样算法 EHAC算法 准则系数
年,卷(期) 2010,(35) 所属期刊栏目
研究方向 页码范围 126-128
页数 分类号 TP311
字数 3873字 语种 中文
DOI 10.3778/j.issn.1002-8331.2010.35.036
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 钱雪忠 江南大学信息工程学院 92 741 15.0 22.0
2 王玉荣 江南大学信息工程学院 2 6 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (16)
共引文献  (10)
参考文献  (8)
节点文献
引证文献  (4)
同被引文献  (8)
二级引证文献  (4)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(6)
  • 参考文献(2)
  • 二级参考文献(4)
2006(6)
  • 参考文献(3)
  • 二级参考文献(3)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(2)
  • 引证文献(1)
  • 二级引证文献(1)
2017(2)
  • 引证文献(1)
  • 二级引证文献(1)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
大数据集
关联规则挖掘
抽样算法
EHAC算法
准则系数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
相关基金
江苏省自然科学基金
英文译名:Natural Science Foundation of Jiangsu Province
官方网址:http://www.jsnsf.gov.cn/News.aspx?a=37
项目类型:
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导