基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The vast availability of information sources has created a need for research on automatic summarization. Current methods perform either by extraction or abstraction. The extraction methods are interesting, because they are robust and independent of the language used. An extractive summary is obtained by selecting sentences of the original source based on information content. This selection can be automated using a classification function induced by a machine learning algorithm. This function classifies sentences into two groups: important or non-important. The important sentences then form the summary. But, the efficiency of this function directly depends on the used training set to induce it. This paper proposes an original way of optimizing this training set by inserting lexemes obtained from ontological knowledge bases. The training set optimized is reinforced by ontological knowledge. An experiment with four machine learning algorithms was made to validate this proposition. The improvement achieved is clearly significant for each of these algorithms.
推荐文章
一种基于Knowledge的网络配置变更管理模型
网络管理
配置管理
Knowledge
组件
模型
The in situ spectral methods for examining redox status of c-type cytochromes in metal-reducing/oxid
c-type cytochrome
In situ spectroscopy
Intact cells
Metal reducing bacteria
Fe(Ⅱ) oxidation bacteria
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Insertion of Ontological Knowledge to Improve Automatic Summarization Extraction Methods
来源期刊 智能学习系统与应用(英文) 学科 医学
关键词 Automatic SUMMARIZATION ONTOLOGY MACHINE Learning Extraction Method
年,卷(期) 2011,(3) 所属期刊栏目
研究方向 页码范围 131-138
页数 8页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Automatic
SUMMARIZATION
ONTOLOGY
MACHINE
Learning
Extraction
Method
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能学习系统与应用(英文)
季刊
2150-8402
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
166
总下载数(次)
0
总被引数(次)
0
论文1v1指导