基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Frequent item sets mining plays an important role in association rules mining. A variety of algorithms for finding frequent item sets in very large transaction databases have been developed. Although many techniques were proposed for maintenance of the discovered rules when new transactions are added, little work is done for maintaining the discovered rules when some transactions are deleted from the database. Updates are fundamental aspect of data management. In this paper, a decremental association rules mining algorithm is present for updating the discovered association rules when some transactions are removed from the original data set. Extensive experiments were conducted to evaluate the performance of the proposed algorithm. The results show that the proposed algorithm is efficient and outperforms other well-known algorithms.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 DARM: Decremental Association Rules Mining
来源期刊 智能学习系统与应用(英文) 学科 医学
关键词 Decremental MINING ASSOCIATION RULES Maintenance Updating ASSOCIATION RULES
年,卷(期) 2011,(3) 所属期刊栏目
研究方向 页码范围 181-189
页数 9页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Decremental
MINING
ASSOCIATION
RULES
Maintenance
Updating
ASSOCIATION
RULES
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能学习系统与应用(英文)
季刊
2150-8402
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
166
总下载数(次)
0
总被引数(次)
0
期刊文献
论文1v1指导