由于目前在小型无人机执行器故障诊断中存在着智能化程度较低,容易受到人为因素干扰,从而出现故障漏检等问题,难以满足小型无人机对飞行安全的要求;为此,提出一种基于多维数据关联规则挖掘(multidimensional data association rules mining,MDARM)和VxWorks操作系统的小型无人机执行器故障诊断方法,通过建立执行器内部传感器测量的温度、压力、流速、力矩等相关变量的历史数据库,并对这些数据进行预处理,以避免带来噪声污染,并利用可测量参数与不可测量参数之间的关联性,建立故障诊断知识库,避免了诊断过程中的人为因素干扰,实现小型无人机执行器故障的精准测量;实验结果证明,这种方法能够有效地提高故障准确率64.7%,对小型无人机执行器的智能诊提供有效指导,应用前景广阔.