基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Matrix methods, now-a-days, are playing an important role in solving the real life problems governed by ODEs and/or by PDEs. Many differential models of sciences and engineers for which the existing methodologies do not give reliable results, these methods are solving them competitively. In this work, a matrix methods is presented for approximate solution of the second-order singularly-perturbed delay differential equations. The main characteristic of this technique is that it reduces these problems to those of solving a system of algebraic equations, thus greatly simplifying the problem. The error analysis and convergence for the proposed method is introduced. Finally some experiments and their numerical solutions are given.
推荐文章
Chebyshev-Gauss-Lobatto节点的一个注记
谱方法
Chebyshev-Gauss-Lobatto节点
Lagrange插值基函数
微分矩阵
Effects of a proline solution cover on the geochemical and mineralogical characteristics of high-sul
Proline
Coal gangue
Pollution control
Heavy metal fraction
Mineralogical characteristics
基于Chebyshev的概率公钥密码体制
Chebyshev多项式
公开密钥密码体制
选择密文攻击
IND-CCA2安全性
基于Access Grid的通用视频会议系统研究
网格
Access Grid
虚拟会场
视频会议
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Approximate Solution of the Singular-Perturbation Problem on Chebyshev-Gauss Grid
来源期刊 美国计算数学期刊(英文) 学科 数学
关键词 SINGULAR PERTURBATION PROBLEMS TWO-POINT Boundary Value PROBLEMS The Shifted CHEBYSHEV Polynomials Approximation METHOD Matrix METHOD
年,卷(期) 2011,(4) 所属期刊栏目
研究方向 页码范围 209-218
页数 10页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
SINGULAR
PERTURBATION
PROBLEMS
TWO-POINT
Boundary
Value
PROBLEMS
The
Shifted
CHEBYSHEV
Polynomials
Approximation
METHOD
Matrix
METHOD
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
美国计算数学期刊(英文)
季刊
2161-1203
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
355
总下载数(次)
1
总被引数(次)
0
论文1v1指导