作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
This paper presents a new method of detecting multi-periodicities in a seasonal time series. Conventional methods such as the average power spectrum or the autocorrelation function plot have been used in detecting multiple periodicities. However, there are numerous cases where those methods either fail, or lead to incorrectly detected periods. This, in turn in applications, produces improper models and results in larger forecasting errors. There is a strong need for a new approach to detecting multi-periodicities. This paper tends to fill this gap by proposing a new method which relies on a mathematical instrument, called the Average Power Function of Noise (APFN) of a time series. APFN has a prominent property that it has a strict local minimum at each period of the time series. This characteristic helps one in detecting periods in time series. Unlike the power spectrum method where it is assumed that the time series is composed of sinusoidal functions of different frequencies, in APFN it is assumed that the time series is periodic, the unique and a much weaker assumption. Therefore, this new instrument is expected to be more powerful in multi-periodicity detection than both the autocorrelation function plot and the average power spectrum. Properties of APFN and applications of the new method in periodicity detection and in forecasting are presented.
推荐文章
Seasonal shifts in the solute ion ratios of vadose zone rock moisture from the Eel River Critical Zo
Vadose zone
Solute ion ratios
Critical Zone Observatory
Seasonal solute dynamics
Groundwater quality assessment using multivariate analysis, geostatistical modeling, and water quali
Groundwater
Multivariate analysis
Geostatistical modeling
Geochemical modeling
Mineralization
Ordinary Kriging
Geochemical tracing and modeling of surface and deep water-rock interactions in elementary granitic
Weathering
Water pathways
U activity ratios
Sr isotope ratios
Anthropogenic gases (CFC,SF6)
CZO
I/A Series控制系统在水煤浆气化中的应用
气化
I/A Series控制系统
自动化控制
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Average Power Function of Noise and Its Applications in Seasonal Time Series Modeling and Forecasting
来源期刊 美国运筹学期刊(英文) 学科 医学
关键词 SEASONAL Time Series Forecasting SEASONALITY Detection AVERAGE POWER FUNCTION of Noise AVERAGE POWER Spectrum AUTOCORRELATION Functions
年,卷(期) 2011,(4) 所属期刊栏目
研究方向 页码范围 293-304
页数 12页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
SEASONAL
Time
Series
Forecasting
SEASONALITY
Detection
AVERAGE
POWER
FUNCTION
of
Noise
AVERAGE
POWER
Spectrum
AUTOCORRELATION
Functions
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
美国运筹学期刊(英文)
半月刊
2160-8830
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
329
总下载数(次)
0
总被引数(次)
0
论文1v1指导