壁面距离在当代湍流模化中仍然扮演着关键角色,然而苦于遍历计算壁面距离的高昂代价,该文考虑了求解偏微分方程的途径.基于Eikonal方程构造出类Euler形式的输运方程,这样,可以直接利用求解Euler和Navier-Stokes方程的CFD程序使用的高效数值格式和部分代码.基于北航的MI-CFD(CFD for missles)数值平台,详尽地介绍了该输运方程在直角坐标下的求解过程.使用隐式LIJSGS时间推进和迎风空间离散,发现该方程具有鲁棒快速的收敛特性.为了保证精度,网格度量系数必须也迎风插值计算.讨论了初始条件和边界条件的特殊处理.成功应用该壁面距离求解方法计算了几个含1-1对应网格和重叠网格的复杂外形.