基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The performances of Particle Swarm Optimization and Genetic Algorithm have been compared to develop a methodology for concurrent and integrated design of mechanical structure and controller of a 2-dof robotic manipulator solving tracking problems. The proposed design scheme optimizes various parameters belonging to different domains (that is, link geometry, mass distribution, moment of inertia, control gains) concurrently to design manipulator, which can track some given paths accurately with a minimum power consumption. The main strength of this study lies with the design of an integrated scheme to solve the above problem. Both real-coded Genetic Algorithm and Particle Swarm Optimization are used to solve this complex optimization problem. Four approaches have been developed and their performances are compared. Particle Swarm Optimization is found to perform better than the Genetic Algorithm, as the former carries out both global and local searches simultaneously, whereas the latter concentrates mainly on the global search. Controllers with adaptive gain values have shown better performance compared to the conventional ones, as expected.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Particle Swarm Optimization Algorithm vs Genetic Algorithm to Develop Integrated Scheme for Obtaining Optimal Mechanical Structure and Adaptive Controller of a Robot
来源期刊 智能控制与自动化(英文) 学科 地球科学
关键词 MANIPULATOR OPTIMAL Structure Adaptive CONTROLLER Genetic Algorithm NEURAL Networks Particle SWARM Optimization
年,卷(期) 2011,(4) 所属期刊栏目
研究方向 页码范围 430-449
页数 20页 分类号 P1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
MANIPULATOR
OPTIMAL
Structure
Adaptive
CONTROLLER
Genetic
Algorithm
NEURAL
Networks
Particle
SWARM
Optimization
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能控制与自动化(英文)
季刊
2153-0653
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
250
总下载数(次)
0
总被引数(次)
0
论文1v1指导