基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
由于分类型数据相异度度量的局限性以及分类型数据在高维空间中的稀疏性,使得传统的相异度度量在高维分类型数据聚类中失效,针对上述问题,本研究提出了一个基于信息熵的理论高维分类型数据聚类算法。该算法综合考虑对应子空间和噪声空间的维度信息熵设计了一个高效、无监督的子空间搜索对高维数据进行有效降维,同时提出了基于整体数据的平均信息熵的全局优化方法对聚类结果进行迭代寻优。通过用人工数据和Votes、Mushroom和Soybean 3个典型的真实分类数据集试验,与其他分类型聚类算法相比,新算法在聚类准确性、熵值、CU(category utility)以及类个数等指标上有明显提高。
推荐文章
基于方差权重矩阵模型的高维数据子空间聚类算法
子空间聚类
方差权重矩阵
模糊C-均值聚类
高维数据
基于决策树的网络高维数据软子空间聚类方法研究
聚类方法
软子空间
高维数据
决策树
信息增益
仿真分析
高维分类型数据加权子空间聚类算法
高维数据
聚类
子空间
信息熵
层次聚类
基于信息熵的混合属性数据谱聚类算法
混合属性数据
谱聚类
高斯核函数
影响因子
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于信息熵的高维分类型数据子空间聚类算法
来源期刊 山东大学学报:工学版 学科 工学
关键词 分类型数据 信息熵 子空间聚类 高维数据
年,卷(期) 2011,(5) 所属期刊栏目 机器学习与数据挖掘
研究方向 页码范围 37-45
页数 分类号 TP301
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 孙浩军 汕头大学计算机系 16 69 5.0 7.0
2 姜大志 汕头大学计算机系 14 36 3.0 5.0
3 杜育林 汕头大学计算机系 1 5 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (5)
共引文献  (7)
参考文献  (5)
节点文献
引证文献  (5)
同被引文献  (6)
二级引证文献  (9)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(6)
  • 引证文献(2)
  • 二级引证文献(4)
2015(2)
  • 引证文献(0)
  • 二级引证文献(2)
2016(3)
  • 引证文献(0)
  • 二级引证文献(3)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
分类型数据
信息熵
子空间聚类
高维数据
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
山东大学学报(工学版)
双月刊
1672-3961
37-1391/T
大16开
济南市经十路17923号
24-221
1956
chi
出版文献量(篇)
3095
总下载数(次)
14
总被引数(次)
24236
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导