基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对新建楼宇空调系统做短期负荷预测工作时,缺少负荷预测所需的数据,难以实现空调系统优化节能的问题,提出一种基于相似日搜索的空调短期负荷预测方法———相似日搜索算法(SASD).算法首先通过分析空调负荷特性,定义日特征向量,构造日特征矩阵,缩小相似日的搜索范围;然后基于温度、湿度和风力3种天气影响因子,计算相似日的体感温度值;接着根据模糊思想选择正确的最终相似日判定因子,搜索得到最终相似日集合;最后通过判定选择面积中心法作为预测方法,实现工作日的负荷精确预测.仿真结果和实际预测效果表明:SASD可以精确预测空调负荷值,且在不同地区及不同时期具有一定的通用性.
推荐文章
基于相似日的支持向量机短期负荷预测
负荷预测
最小二乘支持向量机
细菌趋化
相似日
日期距离
基于相似日的线性外推短期负荷预测
短期负荷预测
线性外推
相似日
基于相似日负荷修正的台风期间短期负荷预测
短期负荷预测
台风
相似日
负荷修正
基于聚类分析的短期负荷智能预测方法研究
数据挖掘
负荷预测
聚类
支持向量机
k-means
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于相似日搜索的空调短期负荷预测方法
来源期刊 华中科技大学学报:自然科学版 学科 工学
关键词 空调系统 负荷预测 相似日 体感温度 特征向量 特征矩阵
年,卷(期) 2011,(12) 所属期刊栏目 控制工程
研究方向 页码范围 76-80
页数 分类号 TM715|TU831
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周伟 重庆大学自动化学院 29 376 10.0 18.0
2 石为人 重庆大学自动化学院 156 2848 28.0 45.0
3 王小刚 重庆大学自动化学院 10 169 8.0 10.0
4 高鹏 重庆大学自动化学院 13 175 7.0 13.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (57)
共引文献  (446)
参考文献  (7)
节点文献
引证文献  (3)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(1)
  • 二级参考文献(0)
1992(3)
  • 参考文献(1)
  • 二级参考文献(2)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(9)
  • 参考文献(0)
  • 二级参考文献(9)
1999(11)
  • 参考文献(1)
  • 二级参考文献(10)
2000(6)
  • 参考文献(0)
  • 二级参考文献(6)
2001(6)
  • 参考文献(1)
  • 二级参考文献(5)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(9)
  • 参考文献(1)
  • 二级参考文献(8)
2004(3)
  • 参考文献(2)
  • 二级参考文献(1)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
空调系统
负荷预测
相似日
体感温度
特征向量
特征矩阵
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华中科技大学学报(自然科学版)
月刊
1671-4512
42-1658/N
大16开
武汉市珞喻路1037号
38-9
1973
chi
出版文献量(篇)
9146
总下载数(次)
26
总被引数(次)
88536
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导