作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
支持向量机是最有效的分类技术之一,具有很高的分类精度和良好的泛化能力,但其应用于大型数据集时的训练过程还是非常复杂.对此提出了一种基于单类支持向量机的分类方法.采用随机选择算法来约简训练集,以达到提高训练速度的目的;同时,通过恢复超球体交集中样本在原始数据中的邻域来保证支持向量机的分类精度.实验证明,该方法能在较大程度上减小计算复杂度,从而提高大型数据集中的训练速度.
推荐文章
基于OC-SVM的新情感词识别
情感分析
情感词库
极性标注
新词发现
基于OC-SVM的新情感词识别
情感分析
情感词库
极性标注
新词发现
基于改进的SVM分类器的医学图像分类新方法
改进的支持向量机方法
粗糙集
乳腺X光图像
基于样本投影分布的平衡不平衡数据集分类
平衡不平衡数据集
样本投影分布
支持向量机
支持向量数据描述
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于OC-SVM的大型数据集分类方法
来源期刊 计算机工程与应用 学科 工学
关键词 单类支持向量机 随机选择 支持向量机分类 大型数据集
年,卷(期) 2011,(4) 所属期刊栏目 数据库、信号与信息处理
研究方向 页码范围 131-133
页数 分类号 TP391
字数 2413字 语种 中文
DOI 10.3778/j.issn.1002-8331.2011.04.036
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 罗可 长沙理工大学计算机与通信工程学院 92 1085 16.0 28.0
2 张瑜 长沙理工大学计算机与通信工程学院 1 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (9)
共引文献  (50)
参考文献  (5)
节点文献
引证文献  (4)
同被引文献  (8)
二级引证文献  (3)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(3)
  • 引证文献(3)
  • 二级引证文献(0)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
单类支持向量机
随机选择
支持向量机分类
大型数据集
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导