基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在进行增量学习时,随着新增样本的不断加入,致使训练集规模不断扩大,消耗大量计算资源,寻优速度缓慢.在深入研究了支持向量分布的特点的基础上提出了分治加权增量支持向量机算法.该算法有效利用了广义KKT条件和中心距离比值,舍弃对后续训练影响不大的样本,得到边界支持向量集,对训练样本进行有效的淘汰.将所剩样本合并,进行加权处理,解决某些样本严重偏离所属的类别,对正常分布的样本不公平的问题.实验结果表明,该方法在保证分类精度的同时,能有效地提高训练速度.
推荐文章
基于支持向量机的增量学习算法
结构风险最小化
支持向量
增量学习
支持向量机增量学习方法及应用
支持向量机
增量学习
学习精度
学习速度
支持向量机增量学习算法研究
支持向量机
增量学习
期望风险
固定划分
过间隔
核PCA支持向量机算法研究
核函数
核主元分析
支持向量机
分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 增量支持向量机算法研究
来源期刊 计算机技术与发展 学科 工学
关键词 支持向量机 增量训练 中心距离比值 加权算法
年,卷(期) 2011,(5) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 40-43,47
页数 分类号 TP391.4
字数 4197字 语种 中文
DOI 10.3969/j.issn.1673-629X.2011.05.011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 孙名松 哈尔滨理工大学网络中心 55 355 12.0 15.0
2 张立新 哈尔滨理工大学网络中心 5 65 4.0 5.0
3 杜春燕 哈尔滨理工大学网络中心 4 16 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (31)
共引文献  (120)
参考文献  (8)
节点文献
引证文献  (7)
同被引文献  (10)
二级引证文献  (12)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(9)
  • 参考文献(1)
  • 二级参考文献(8)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(4)
  • 参考文献(2)
  • 二级参考文献(2)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(7)
  • 引证文献(3)
  • 二级引证文献(4)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(2)
  • 引证文献(0)
  • 二级引证文献(2)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
2019(3)
  • 引证文献(1)
  • 二级引证文献(2)
研究主题发展历程
节点文献
支持向量机
增量训练
中心距离比值
加权算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
相关基金
黑龙江省自然科学基金
英文译名:
官方网址:http://jj.dragon.cn/zr/index.asp
项目类型:
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导