基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
指纹识别技术是当今应用最广泛的生物识别技术之一。在指纹识别过程中,图像处理、特征提取、匹配等过程数据量庞大,计算比较烦琐。BP神经网络具有良好的自学习能力、强大的分类能力和容错能力,将其应用到指纹识别中是可行的。为改进BP神经网络计算速度较慢,梯度下降法不能处理一些不可微传递函数的问题,采用粒子群算法对BP算法进行优化,提高了指纹识别的速度和准确度。
推荐文章
基于粒子群优化BP神经网络的脉象识别方法
脉象识别
粒子群算法
输出误差
误差反向传播算法
神经网络
泛化能力
粒子群优化神经网络的体育动作识别
粒子群优化算法
神经网络
体育动作
识别与分类
基于DHNN人工神经网络的指纹识别技术
DHNN
指纹
权值
网络学习
收敛
一种基于神经网络匹配的指纹识别算法
指纹识别
神经网络
模板匹配
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 粒子群算法优化BP神经网络的指纹识别技术
来源期刊 科技广场 学科 工学
关键词 指纹识别 BP神经网络 粒子群算法
年,卷(期) 2011,(7) 所属期刊栏目 图形与图像技术
研究方向 页码范围 40-42
页数 分类号 TP391
字数 2268字 语种 中文
DOI 10.3969/j.issn.1671-4792.2011.07.011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 马少华 沈阳建筑大学信息与控制工程学院 34 108 6.0 9.0
2 曹三民 沈阳建筑大学信息与控制工程学院 2 8 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (24)
共引文献  (37)
参考文献  (4)
节点文献
引证文献  (3)
同被引文献  (0)
二级引证文献  (0)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(5)
  • 参考文献(0)
  • 二级参考文献(5)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
指纹识别
BP神经网络
粒子群算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
科技广场
月刊
1671-4792
36-1253/N
大16开
南昌市省府大院北二路53号
44-66
1988
chi
出版文献量(篇)
11613
总下载数(次)
26
总被引数(次)
31625
论文1v1指导