基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
将稀疏编码理论应用于入侵检测,并提出一种将稀疏编码理论和支持向量机结合的入侵检测算法。稀疏性约束同时引入到过完备词典学习和编码过程,学习到的系数作为特征送入到支持向量机进行入侵检测。实验表明,稀疏性具有一定的去噪能力,使得学习的特征更富有判别力。同时实验也验证了所提出的方法能保证较高的检测率和较低的误报率,并且对不平衡数据集有较好的鲁棒性。
推荐文章
基于SVM技术的入侵检测
信息安全
入侵检测
异常检测
滥用检测
1类SVM(支持向量机)
基于稀疏自编码器和SVM的垃圾短信过滤
支撑矢量机
稀疏自编码器
短信
特征提取
基于SSA-SVM的网络入侵检测研究
麻雀搜索算法
误报率
支持向量机
网络入侵
检测率
入侵检测及基于协同式的入侵防范
入侵检测
安全策略
入侵防范
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于稀疏编码和SVM的协同入侵检测
来源期刊 微型机与应用 学科 工学
关键词 稀疏编码 支持向量机 协同 入侵检测 过完备词典
年,卷(期) 2011,(22) 所属期刊栏目 技术与方法
研究方向 页码范围 78-81
页数 分类号 TP181
字数 3691字 语种 中文
DOI 10.3969/j.issn.1674-7720.2011.22.027
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈柏生 华侨大学计算机科学与技术学院 18 304 5.0 17.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (25)
共引文献  (49)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(2)
  • 参考文献(0)
  • 二级参考文献(2)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(3)
  • 参考文献(2)
  • 二级参考文献(1)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
稀疏编码
支持向量机
协同
入侵检测
过完备词典
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息技术与网络安全
月刊
2096-5133
10-1543/TP
大16开
北京市海淀区清华东路25号(北京927信箱)
82-417
1982
chi
出版文献量(篇)
10909
总下载数(次)
33
总被引数(次)
35987
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导